Common Core: 6th Grade Math : Solve Unit Rate Problems: CCSS.Math.Content.6.RP.A.3b

Study concepts, example questions & explanations for Common Core: 6th Grade Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #43 : Ratios & Proportional Relationships

At a local market, farmers trade produce to obtain a more diverse crop. A farmer will trade \(\displaystyle 13\) turnips for \(\displaystyle 3\) ears of corn. If a man has \(\displaystyle 9\) ears of corn, then how many turnips can he get?

Possible Answers:

\(\displaystyle 43\ \text{turnips}\)

\(\displaystyle 93\ \text{turnips}\)

\(\displaystyle 22\ \text{turnips}\)

\(\displaystyle 94\ \text{turnips}\)

\(\displaystyle 39\ \text{turnips}\)

Correct answer:

\(\displaystyle 39\ \text{turnips}\)

Explanation:

Ratios can be written in the following format:

\(\displaystyle A:B\rightarrow \frac{A}{B}\)

Using this format, substitute the given information to create a ratio.

\(\displaystyle 3\ \text{corn}: 13\ \text{turnips}\)

Rewrite the ratio as a fraction.

\(\displaystyle 3\ \text{corn}: 13\ \text{turnips}\rightarrow \frac{3\ \text{corn}}{13\ \text{turnips}}\)

We know that the farmer has \(\displaystyle 9\) ears of corn. Create a ratio with the variable \(\displaystyle T\) that represents how many turnips he can get.

\(\displaystyle \frac{9\ \text{corn}}{T}\)

Create a proportion using the two ratios.

\(\displaystyle \frac{3\ \text{corn}}{13\ \text{turnips}}=\frac{9\ \text{corn}}{T}\)

Cross multiply and solve for \(\displaystyle T\).

\(\displaystyle 9\ \text{corn}\times 13\ \text{turnips}=3\ \text{corn}\times T\)

Simplify.

\(\displaystyle 3T=117\)

Divide both sides of the equation by \(\displaystyle 3\).

\(\displaystyle \frac{3T}{3}=\frac{117}{3}\)

Solve.

\(\displaystyle T=39\)

The farmer can get \(\displaystyle 39\ \text{turnips}\).

Example Question #51 : Algebraic Concepts

At a local market, farmers trade produce to obtain a more diverse crop. A farmer will trade \(\displaystyle 13\) turnips for \(\displaystyle 3\) ears of corn. If a man has \(\displaystyle 27\) ears of corn, then how many turnips can he get?

Possible Answers:

\(\displaystyle 87\ \text{turnips}\)

\(\displaystyle 171\ \text{turnips}\)

\(\displaystyle 111\ \text{turnips}\)

\(\displaystyle 117\ \text{turnips}\)

\(\displaystyle 127\ \text{turnips}\)

Correct answer:

\(\displaystyle 117\ \text{turnips}\)

Explanation:

Ratios can be written in the following format:

\(\displaystyle A:B\rightarrow \frac{A}{B}\)

Using this format, substitute the given information to create a ratio.

\(\displaystyle 3\ \text{corn}: 13\ \text{turnips}\)

Rewrite the ratio as a fraction.

\(\displaystyle 3\ \text{corn}: 13\ \text{turnips}\rightarrow \frac{3\ \text{corn}}{13\ \text{turnips}}\)

We know that the farmer has \(\displaystyle 27\) ears of corn. Create a ratio with the variable \(\displaystyle T\) that represents how many turnips he can get.

\(\displaystyle \frac{27\ \text{corn}}{T}\)

Create a proportion using the two ratios.

\(\displaystyle \frac{3\ \text{corn}}{13\ \text{turnips}}=\frac{27\ \text{corn}}{T}\)

Cross multiply and solve for \(\displaystyle T\).

\(\displaystyle 27\ \text{corn}\times 13\ \text{turnips}=3\ \text{corn}\times T\)

Simplify.

\(\displaystyle 3T=351\)

Divide both sides of the equation by \(\displaystyle 3\).

\(\displaystyle \frac{3T}{3}=\frac{351}{3}\)

Solve.

\(\displaystyle T=117\)

The farmer can get \(\displaystyle 117\ \text{turnips}\).

Example Question #1 : Solve Unit Rate Problems: Ccss.Math.Content.6.Rp.A.3b

At a local market, farmers trade produce to obtain a more diverse crop. A farmer will trade \(\displaystyle 13\) turnips for \(\displaystyle 3\) ears of corn. If a man has \(\displaystyle 6\) ears of corn, then how many turnips can he get?

Possible Answers:

\(\displaystyle 26\ \text{turnips}\)

\(\displaystyle 12\ \text{turnips}\)

\(\displaystyle 24\ \text{turnips}\)

\(\displaystyle 21\ \text{turnips}\)

\(\displaystyle 62\ \text{turnips}\)

Correct answer:

\(\displaystyle 26\ \text{turnips}\)

Explanation:

Ratios can be written in the following format:

\(\displaystyle A:B\rightarrow \frac{A}{B}\)

Using this format, substitute the given information to create a ratio.

\(\displaystyle 3\ \text{corn}: 13\ \text{turnips}\)

Rewrite the ratio as a fraction.

\(\displaystyle 3\ \text{corn}: 13\ \text{turnips}\rightarrow \frac{3\ \text{corn}}{13\ \text{turnips}}\)

We know that the farmer has \(\displaystyle 6\) ears of corn. Create a ratio with the variable \(\displaystyle T\) that represents how many turnips he can get.

\(\displaystyle \frac{6\ \text{corn}}{T}\)

Create a proportion using the two ratios.

\(\displaystyle \frac{3\ \text{corn}}{13\ \text{turnips}}=\frac{6\ \text{corn}}{T}\)

Cross multiply and solve for \(\displaystyle T\).

\(\displaystyle 6\ \text{corn}\times 13\ \text{turnips}=3\ \text{corn}\times T\)

Simplify.

\(\displaystyle 3T=78\)

Divide both sides of the equation by \(\displaystyle 3\).

\(\displaystyle \frac{3T}{3}=\frac{78}{3}\)

Solve.

\(\displaystyle T=26\)

The farmer can get \(\displaystyle 26\ \text{turnips}\).

Example Question #2 : Solve Unit Rate Problems: Ccss.Math.Content.6.Rp.A.3b

At a local market, farmers trade produce to obtain a more diverse crop. A farmer will trade \(\displaystyle 13\) turnips for \(\displaystyle 3\) ears of corn. If a man has \(\displaystyle 12\) ears of corn, then how many turnips can he get?

Possible Answers:

\(\displaystyle 57\ \text{turnips}\)

\(\displaystyle 52\ \text{turnips}\)

\(\displaystyle 65\ \text{turnips}\)

\(\displaystyle 56\ \text{turnips}\)

\(\displaystyle 60\ \text{turnips}\)

Correct answer:

\(\displaystyle 52\ \text{turnips}\)

Explanation:

Ratios can be written in the following format:

\(\displaystyle A:B\rightarrow \frac{A}{B}\)

Using this format, substitute the given information to create a ratio.

\(\displaystyle 3\ \text{corn}: 13\ \text{turnips}\)

Rewrite the ratio as a fraction.

\(\displaystyle 3\ \text{corn}: 13\ \text{turnips}\rightarrow \frac{3\ \text{corn}}{13\ \text{turnips}}\)

We know that the farmer has \(\displaystyle 12\) ears of corn. Create a ratio with the variable \(\displaystyle T\) that represents how many turnips he can get.

\(\displaystyle \frac{12\ \text{corn}}{T}\)

Create a proportion using the two ratios.

\(\displaystyle \frac{3\ \text{corn}}{13\ \text{turnips}}=\frac{12\ \text{corn}}{T}\)

Cross multiply and solve for \(\displaystyle T\).

\(\displaystyle 12\ \text{corn}\times 13\ \text{turnips}=3\ \text{corn}\times T\)

Simplify.

\(\displaystyle 3T=156\)

Divide both sides of the equation by \(\displaystyle 3\).

\(\displaystyle \frac{3T}{3}=\frac{156}{3}\)

Solve.

\(\displaystyle T=52\)

The farmer can get \(\displaystyle 52\ \text{turnips}\).

Example Question #3 : Solve Unit Rate Problems: Ccss.Math.Content.6.Rp.A.3b

At a local market, farmers trade produce to obtain a more diverse crop. A farmer will trade \(\displaystyle 13\) turnips for \(\displaystyle 3\) ears of corn. If a man has \(\displaystyle 210\) ears of corn, then how many turnips can he get?

Possible Answers:

\(\displaystyle 980\ \text{turnips}\)

\(\displaystyle 180\ \text{turnips}\)

\(\displaystyle 2100\ \text{turnips}\)

\(\displaystyle 910\ \text{turnips}\)

\(\displaystyle 1009\ \text{turnips}\)

Correct answer:

\(\displaystyle 910\ \text{turnips}\)

Explanation:

Ratios can be written in the following format:

\(\displaystyle A:B\rightarrow \frac{A}{B}\)

Using this format, substitute the given information to create a ratio.

\(\displaystyle 3\ \text{corn}: 13\ \text{turnips}\)

Rewrite the ratio as a fraction.

\(\displaystyle 3\ \text{corn}: 13\ \text{turnips}\rightarrow \frac{3\ \text{corn}}{13\ \text{turnips}}\)

We know that the farmer has \(\displaystyle 210\) ears of corn. Create a ratio with the variable \(\displaystyle T\) that represents how many turnips he can get.

\(\displaystyle \frac{210\ \text{corn}}{T}\)

Create a proportion using the two ratios.

\(\displaystyle \frac{3\ \text{corn}}{13\ \text{turnips}}=\frac{210\ \text{corn}}{T}\)

Cross multiply and solve for \(\displaystyle T\).

\(\displaystyle 210\ \text{corn}\times 13\ \text{turnips}=3\ \text{corn}\times T\)

Simplify.

\(\displaystyle 3T=2730\)

Divide both sides of the equation by \(\displaystyle 3\).

\(\displaystyle \frac{3T}{3}=\frac{2730}{3}\)

Solve.

\(\displaystyle T=910\)

The farmer can get \(\displaystyle 910\ \text{turnips}\).

Example Question #4 : Solve Unit Rate Problems: Ccss.Math.Content.6.Rp.A.3b

At a local market, farmers trade produce to obtain a more diverse crop. A farmer will trade \(\displaystyle 13\) turnips for \(\displaystyle 3\) ears of corn. If a man has \(\displaystyle 150\) ears of corn, then how many turnips can he get?

 

 
Possible Answers:

\(\displaystyle 860\ \text{turnips}\)

\(\displaystyle 750\ \text{turnips}\)

\(\displaystyle 560\ \text{turnips}\)

\(\displaystyle 650\ \text{turnips}\)

\(\displaystyle 550\ \text{turnips}\)

Correct answer:

\(\displaystyle 650\ \text{turnips}\)

Explanation:

Ratios can be written in the following format:

\(\displaystyle A:B\rightarrow \frac{A}{B}\)

Using this format, substitute the given information to create a ratio.

\(\displaystyle 3\ \text{corn}: 13\ \text{turnips}\)

Rewrite the ratio as a fraction.

\(\displaystyle 3\ \text{corn}: 13\ \text{turnips}\rightarrow \frac{3\ \text{corn}}{13\ \text{turnips}}\)

We know that the farmer has \(\displaystyle 150\) ears of corn. Create a ratio with the variable \(\displaystyle T\) that represents how many turnips he can get.

\(\displaystyle \frac{150\ \text{corn}}{T}\)

Create a proportion using the two ratios.

\(\displaystyle \frac{3\ \text{corn}}{13\ \text{turnips}}=\frac{150\ \text{corn}}{T}\)

Cross multiply and solve for \(\displaystyle T\).

\(\displaystyle 150\ \text{corn}\times 13\ \text{turnips}=3\ \text{corn}\times T\)

Simplify.

\(\displaystyle 3T=1950\)

Divide both sides of the equation by \(\displaystyle 3\).

\(\displaystyle \frac{3T}{3}=\frac{1950}{3}\)

Solve.

\(\displaystyle T=650\)

The farmer can get \(\displaystyle 650\ \text{turnips}\).

Example Question #65 : Equations

At a local market, farmers trade produce to obtain a more diverse crop. A farmer will trade \(\displaystyle 13\) turnips for \(\displaystyle 3\) ears of corn. If a man has \(\displaystyle 180\) ears of corn, then how many turnips can he get?

Possible Answers:

\(\displaystyle 870\ \text{turnips}\)

\(\displaystyle 787\ \text{turnips}\)

\(\displaystyle 878\ \text{turnips}\)

\(\displaystyle 780\ \text{turnips}\)

\(\displaystyle 877\ \text{turnips}\)

Correct answer:

\(\displaystyle 780\ \text{turnips}\)

Explanation:

Ratios can be written in the following format:

\(\displaystyle A:B\rightarrow \frac{A}{B}\)

Using this format, substitute the given information to create a ratio.

\(\displaystyle 3\ \text{corn}: 13\ \text{turnips}\)

Rewrite the ratio as a fraction.

\(\displaystyle 3\ \text{corn}: 13\ \text{turnips}\rightarrow \frac{3\ \text{corn}}{13\ \text{turnips}}\)

We know that the farmer has \(\displaystyle 180\) ears of corn. Create a ratio with the variable \(\displaystyle T\) that represents how many turnips he can get.

\(\displaystyle \frac{180\ \text{corn}}{T}\)

Create a proportion using the two ratios.

\(\displaystyle \frac{3\ \text{corn}}{13\ \text{turnips}}=\frac{180\ \text{corn}}{T}\)

Cross multiply and solve for \(\displaystyle T\).

\(\displaystyle 180\ \text{corn}\times 13\ \text{turnips}=3\ \text{corn}\times T\)

Simplify.

\(\displaystyle 3T=2340\)

Divide both sides of the equation by \(\displaystyle 3\).

\(\displaystyle \frac{3T}{3}=\frac{2340}{3}\)

Solve.

\(\displaystyle T=780\)

The farmer can get \(\displaystyle 780\ \text{turnips}\).

Example Question #66 : Equations

At a local market, farmers trade produce to obtain a more diverse crop. A farmer will trade \(\displaystyle 13\) turnips for \(\displaystyle 3\) ears of corn. If a man has \(\displaystyle 99\) ears of corn, then how many turnips can he get?

Possible Answers:

\(\displaystyle 924\ \text{turnips}\)

\(\displaystyle 249\ \text{turnips}\)

\(\displaystyle 429\ \text{turnips}\)

\(\displaystyle 449\ \text{turnips}\)

\(\displaystyle 483\ \text{turnips}\)

Correct answer:

\(\displaystyle 429\ \text{turnips}\)

Explanation:

Ratios can be written in the following format:

\(\displaystyle A:B\rightarrow \frac{A}{B}\)

Using this format, substitute the given information to create a ratio.

\(\displaystyle 3\ \text{corn}: 13\ \text{turnips}\)

Rewrite the ratio as a fraction.

\(\displaystyle 3\ \text{corn}: 13\ \text{turnips}\rightarrow \frac{3\ \text{corn}}{13\ \text{turnips}}\)

We know that the farmer has \(\displaystyle 99\) ears of corn. Create a ratio with the variable \(\displaystyle T\) that represents how many turnips he can get.

\(\displaystyle \frac{99\ \text{corn}}{T}\)

Create a proportion using the two ratios.

\(\displaystyle \frac{3\ \text{corn}}{13\ \text{turnips}}=\frac{99\ \text{corn}}{T}\)

Cross multiply and solve for \(\displaystyle T\).

\(\displaystyle 99\ \text{corn}\times 13\ \text{turnips}=3\ \text{corn}\times T\)

Simplify.

\(\displaystyle 3T=1287\)

Divide both sides of the equation by \(\displaystyle 3\).

\(\displaystyle \frac{3T}{3}=\frac{1287}{3}\)

Solve.

\(\displaystyle T=429\)

The farmer can get \(\displaystyle 429\ \text{turnips}\).

Example Question #67 : Equations

At a local market, farmers trade produce to obtain a more diverse crop. A farmer will trade \(\displaystyle 13\) turnips for \(\displaystyle 3\) ears of corn. If a man has \(\displaystyle 36\) ears of corn, then how many turnips can he get?

Possible Answers:

\(\displaystyle 156\ \text{turnips}\)

\(\displaystyle 166\ \text{turnips}\)

\(\displaystyle 516\ \text{turnips}\)

\(\displaystyle 165\ \text{turnips}\)

\(\displaystyle 159\ \text{turnips}\)

Correct answer:

\(\displaystyle 156\ \text{turnips}\)

Explanation:

Ratios can be written in the following format:

\(\displaystyle A:B\rightarrow \frac{A}{B}\)

Using this format, substitute the given information to create a ratio.

\(\displaystyle 3\ \text{corn}: 13\ \text{turnips}\)

Rewrite the ratio as a fraction.

\(\displaystyle 3\ \text{corn}: 13\ \text{turnips}\rightarrow \frac{3\ \text{corn}}{13\ \text{turnips}}\)

We know that the farmer has \(\displaystyle 36\) ears of corn. Create a ratio with the variable \(\displaystyle T\) that represents how many turnips he can get.

\(\displaystyle \frac{36\ \text{corn}}{T}\)

Create a proportion using the two ratios.

\(\displaystyle \frac{3\ \text{corn}}{13\ \text{turnips}}=\frac{36\ \text{corn}}{T}\)

Cross multiply and solve for \(\displaystyle T\).

\(\displaystyle 36\ \text{corn}\times 13\ \text{turnips}=3\ \text{corn}\times T\)

Simplify.

\(\displaystyle 3T=468\)

Divide both sides of the equation by \(\displaystyle 3\).

\(\displaystyle \frac{3T}{3}=\frac{468}{3}\)

Solve.

\(\displaystyle T=156\)

The farmer can get \(\displaystyle 156\ \text{turnips}\).

Example Question #5 : Solve Unit Rate Problems: Ccss.Math.Content.6.Rp.A.3b

At a local market, farmers trade produce to obtain a more diverse crop. A farmer will trade \(\displaystyle 13\) turnips for \(\displaystyle 3\) ears of corn. If a man has \(\displaystyle 3000\) ears of corn, then how many turnips can he get?

 

 
Possible Answers:

\(\displaystyle 33000\ \text{turnips}\)

\(\displaystyle 13000\ \text{turnips}\)

\(\displaystyle 13113\ \text{turnips}\)

\(\displaystyle 13013\ \text{turnips}\)

\(\displaystyle 31000\ \text{turnips}\)

Correct answer:

\(\displaystyle 13000\ \text{turnips}\)

Explanation:

Ratios can be written in the following format:

\(\displaystyle A:B\rightarrow \frac{A}{B}\)

Using this format, substitute the given information to create a ratio.

\(\displaystyle 3\ \text{corn}: 13\ \text{turnips}\)

Rewrite the ratio as a fraction.

\(\displaystyle 3\ \text{corn}: 13\ \text{turnips}\rightarrow \frac{3\ \text{corn}}{13\ \text{turnips}}\)

We know that the farmer has \(\displaystyle 3000\) ears of corn. Create a ratio with the variable \(\displaystyle T\) that represents how many turnips he can get.

\(\displaystyle \frac{3000\ \text{corn}}{T}\)

Create a proportion using the two ratios.

\(\displaystyle \frac{3\ \text{corn}}{13\ \text{turnips}}=\frac{3000\ \text{corn}}{T}\)

Cross multiply and solve for \(\displaystyle T\).

\(\displaystyle 3000\ \text{corn}\times 13\ \text{turnips}=3\ \text{corn}\times T\)

Simplify.

\(\displaystyle 3T=39000\)

Divide both sides of the equation by \(\displaystyle 3\).

\(\displaystyle \frac{3T}{3}=\frac{39000}{3}\)

Solve.

\(\displaystyle T=13000\)

The farmer can get \(\displaystyle 13000\ \text{turnips}\).

Learning Tools by Varsity Tutors