GRE Subject Test: Math : Imaginary Numbers & Complex Functions

Study concepts, example questions & explanations for GRE Subject Test: Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Irrational Numbers

Evaluate: 

\(\displaystyle \left (2 + 3i \right )^{3}\)

Possible Answers:

\(\displaystyle 8 - 27i\)

\(\displaystyle -4 6+ 9i\)

\(\displaystyle -62 + 63 i\)

\(\displaystyle 8 + 9i\)

\(\displaystyle -46 + 63 i\)

Correct answer:

\(\displaystyle -4 6+ 9i\)

Explanation:

We can set \(\displaystyle A = 2, B = 3i\) in the cube of a binomial pattern:

\(\displaystyle \left ( A + B\right ) ^{3} = A ^{3} + 3 A^{2 }B + 3AB^{2} + B^{3}\)

\(\displaystyle = 2 ^{3} + 3 \cdot 2 ^{2 } \cdot 3i + 3 \cdot 2 \cdot (3i)^{2} + (3i)^{3}\)

\(\displaystyle = 2^{3} + 3 \cdot 2^{2} \cdot 3i + 3 \cdot 2 \cdot 3 ^{2}\cdot i^{2} + 3^{3} \cdot i^{3}\)

\(\displaystyle = 8 + 36i + 54 i^{2} + 27 i^{3}\)

\(\displaystyle = 8 + 36i + 54 (-1) + 27 (-i)\)

\(\displaystyle = 8 + 36i - 54 - 27 i\)

\(\displaystyle = -46 + 9i\)

Example Question #2 : Imaginary Numbers

Simplify the following product:

\(\displaystyle {} (5+3i)(-2+i)\)

Possible Answers:

\(\displaystyle {} -13+11i\)

\(\displaystyle {} -13-i\)

\(\displaystyle {}-7-i\)

\(\displaystyle {} -10+3i\)

Correct answer:

\(\displaystyle {} -13-i\)

Explanation:

Multiply these complex numbers out in the typical way:

\(\displaystyle {}(5+3i)(-2+i) = -10+5i-6i+3i^2\)

and recall that \(\displaystyle i^2=-1\) by definition. Then, grouping like terms we get

\(\displaystyle {} (-10-3)+(5i-6i) = -13-i\)

which is our final answer.

Example Question #1 : Imaginary Numbers & Complex Functions

Simplify:

\(\displaystyle (5+8i)(6-2i)\)

Possible Answers:

\(\displaystyle 7+16i\)

\(\displaystyle 25+8i\)

\(\displaystyle 46+38i\)

\(\displaystyle 16+32i\)

Correct answer:

\(\displaystyle 46+38i\)

Explanation:

Start by using FOIL. Which means to multiply the first terms together then the outer terms followed by the inner terms and lastly, the last terms.

\(\displaystyle (5+8i)(6-2i)=30-10i+48i-16i^2\)

Remember that \(\displaystyle i=\sqrt-1\), so \(\displaystyle i^2=-1\).

Substitute in \(\displaystyle -1\) for \(\displaystyle i^2\)

\(\displaystyle 30-10i+48i-16i^2=30+38i-16(-1)=30+38i+16=46+38i\)

Example Question #1 : Imaginary Numbers & Complex Functions

Simplify:

\(\displaystyle (2+5i)(-8-i)\)

Possible Answers:

\(\displaystyle 42+11i\)

\(\displaystyle -18-5i\)

\(\displaystyle 12+6i\)

\(\displaystyle -11-42i\)

Correct answer:

\(\displaystyle -11-42i\)

Explanation:

Start by using FOIL. Which means to multiply the first terms together then the outer terms followed by the inner terms and lastly, the last terms.

\(\displaystyle (2+5i)(-8-i)=-16-2i-40i-5i^2\)

Remember that \(\displaystyle i=\sqrt-1\), so \(\displaystyle i^2=-1\).

Substitute in \(\displaystyle -1\) for \(\displaystyle i^2\)

\(\displaystyle -16-2i-40i-5i^2=-16-42i-5(-1)=-16+5-42i=-11-42i\)

Example Question #3 : Imaginary Numbers & Complex Functions

Simplify:

\(\displaystyle (2+6i)(5+3i)\)

Possible Answers:

\(\displaystyle -8+36i\)

\(\displaystyle -36-8i\)

\(\displaystyle 12-8i\)

\(\displaystyle 36-8i\)

Correct answer:

\(\displaystyle -8+36i\)

Explanation:

Start by using FOIL. Which means to multiply the first terms together then the outer terms followed by the inner terms and lastly, the last terms.

\(\displaystyle (2+6i)(5+3i)=10+6i+30i+18i^2\)

Remember that \(\displaystyle i=\sqrt-1\), so \(\displaystyle i^2=-1\).

Substitute in \(\displaystyle -1\) for \(\displaystyle i^2\)

\(\displaystyle 10+6i+30i+18i^2=10+36i+18(-1)=10-18+36i=-8+36i\)

Example Question #2 : Equations With Complex Numbers

Solve for \(\displaystyle a\) and \(\displaystyle b\)

\(\displaystyle ai^{93}+bi^{35}+ai^{24}-bi^{86}=40+20i\)

Possible Answers:

\(\displaystyle a=40, b=20\)

\(\displaystyle a=15, b=15\)

\(\displaystyle a=30, b=10\)

\(\displaystyle a=20, b=40\)

\(\displaystyle a=10, b=30\)

Correct answer:

\(\displaystyle a=30, b=10\)

Explanation:

Remember that 

\(\displaystyle i = \sqrt{-1}\\ i^2 = \sqrt{-1}^2 = -1\\ i^3 = i^2\cdot i = -1 \cdot i = -i\\ i^4 = i^2 \cdot i^2 = (-1)\cdot(-1) = 1\\ i^5 = i^4\cdot i = 1\cdot i = i = \sqrt{-1}\\ i^6 = i^4\cdot i^2 = 1\cdot i^2 = i^2 =-1\)

So the powers of \(\displaystyle i\) are cyclic. This means that when we try to figure out the value of an exponent of \(\displaystyle i\), we can ignore all the powers that are multiples of \(\displaystyle 4\) because they end up multiplying the end result by \(\displaystyle 1\), and therefore do nothing.

This means that 

\(\displaystyle ai^{93} + bi^{35} + ai^{24} - bi^{86}\\ = ai^{92+1} + bi^{32+3} + ai^{24+0} - bi^{84+2}\\ = ai^{92}\cdot i^1 + bi^{32}\cdot i^3 + ai^{24}\cdot i^0 - bi^{84}\cdot i^2\\ =a(i^4)^{23}\cdot i^1 + b(i^4)^8\cdot i^3 + a(i^4)^6\cdot i^0 - b(i^4)^{21}\cdot i^2\\ = a (1^{23})\cdot i + b(1^8)\cdot i^3 + a(1^6) - b(1^{21})\cdot i^2\)

Now, remembering the relationships of the exponents of \(\displaystyle i\), we can simplify this to:

\(\displaystyle ai - bi + a - (-b) = ai-bi+a+b\\ = (a+b) + (a-b)i = 40+20i\)

Because the elements on the left and right have to correspond (no mixing and matching!), we get the relationships: 

\(\displaystyle a+b=40\)

\(\displaystyle a-b=10\)

No matter how you solve it, you get the values \(\displaystyle a=30\)\(\displaystyle b=10\).

Example Question #1 : Imaginary Numbers & Complex Functions

Simplify: \(\displaystyle \sqrt{-243}\)

Possible Answers:

\(\displaystyle 9i\)

\(\displaystyle 9i\sqrt{3}\)

None of the Above

\(\displaystyle -9i\sqrt{3}\)

Correct answer:

\(\displaystyle 9i\sqrt{3}\)

Explanation:

Step 1: Split the \(\displaystyle \sqrt{-243}\) into \(\displaystyle \sqrt{243}\cdot\sqrt{-1}\).

Step 2: Recall that \(\displaystyle \sqrt{-1}=i\), so let's replace it.

We now have: \(\displaystyle \sqrt{243}\cdot i\).

Step 3: Simplify \(\displaystyle \sqrt{243}\). To do this, we look at the number on the inside.

\(\displaystyle 243=3\cdot3\cdot3\cdot3\cdot3\).

Step 4: Take the factorization of \(\displaystyle 243\) and take out any pairs of numbers. For any pair of numbers that we find, we only take \(\displaystyle 1\) of the numbers out.

We have a pair of \(\displaystyle 3's\), so a \(\displaystyle 3\) is outside the radical.
We have another pair of \(\displaystyle 3's\), so one more three is put outside the radical.

We need to multiply everything that we bring outside: \(\displaystyle 3*3=9\)

Step 5: The \(\displaystyle i\) goes with the 9...\(\displaystyle 9i\)

Step 6: The last \(\displaystyle 3\) after taking out pairs gets put back into a square root and is written right after the \(\displaystyle i\)

It will look something like this: \(\displaystyle 9i\sqrt{3}\)

Example Question #1 : Imaginary Numbers & Complex Functions

\(\displaystyle Simplify: 5\sqrt{12i^{2}}\)

Possible Answers:

\(\displaystyle 5\sqrt{-12}\)

\(\displaystyle 5i\sqrt{12}\)

\(\displaystyle 2i\sqrt{3}\)

\(\displaystyle 10i\sqrt{}3\)

Correct answer:

\(\displaystyle 10i\sqrt{}3\)

Explanation:

There are two ways to simplify this problem: 

Method 1: 

\(\displaystyle We\ know\ that\ i^2=-1,\ when\ we\ replace\ that\ we\ get:\)

\(\displaystyle 5\sqrt{-12}\)

\(\displaystyle =5i\sqrt{12}(take\ the\ i\ out)\)

\(\displaystyle =5i\sqrt{4}\sqrt{3} (the\ perfect\ square\ 4\ will\ go\ into\ 12)\)

\(\displaystyle =10i{\sqrt{3}}\ reduce\)

Method 2: 

\(\displaystyle We\ know\ that\ the\ square\ root\ of\ anything\ squared\ is\ just\ itself\)

\(\displaystyle \sqrt{i^2}=i\)

\(\displaystyle 5\sqrt{12i^{2}}=5i\sqrt{12}\)

\(\displaystyle =5i\sqrt{4}\sqrt{3} (the\ perfect\ square\ 4\ will\ go\ into\ 12)\)

\(\displaystyle =10i{\sqrt{3}}\ reduce\)

 

 

Example Question #1 : Imaginary Numbers & Complex Functions

\(\displaystyle Simplify: \sqrt{-49}-\sqrt{-16}\)

 

Possible Answers:

\(\displaystyle 3i\)

\(\displaystyle -11i\)

\(\displaystyle 4-7i\)

\(\displaystyle 7-4i\)

Correct answer:

\(\displaystyle 3i\)

Explanation:

\(\displaystyle First\ simplify\ each\ radical:\)

\(\displaystyle \sqrt{-49}-\sqrt{-16}=7i-4i\)

\(\displaystyle Next\ combine\ like\ terms:\)

\(\displaystyle 7i-4i=3i\)

Example Question #2 : Imaginary Numbers & Complex Functions

\(\displaystyle Simplify: \sqrt{-72}\)

Possible Answers:

\(\displaystyle 6i{\sqrt{2}}\)

\(\displaystyle 6{\sqrt{-2}}\)

\(\displaystyle -6i\sqrt{2}\)

\(\displaystyle -6{\sqrt{2}}\)

Correct answer:

\(\displaystyle 6i{\sqrt{2}}\)

Explanation:

\(\displaystyle When\ reducing\ the\ square\ root\ of\ a\ negative\ number\ -\ we\ must\ first\ \)

 \(\displaystyle i=\sqrt{-1}\)

\(\displaystyle \sqrt{-72}=\sqrt{-1}\sqrt{72}=i\sqrt{72}\)

\(\displaystyle Once\ we\ have\ taken\ out\ the\ i,\ then\ we\ can\ simply\ break\ down\) \(\displaystyle the\ number\ under\ the\ radical\ by\ finding\ the\ largest\ perfect\ square\ that\ will go\ into\ it.\)

\(\displaystyle 36\ will\ go\ into\ 72\ so\ we\ break\ this\ down\ to\ become:\)

\(\displaystyle i\sqrt{36}\sqrt{2}=6i\sqrt{2}\)

Learning Tools by Varsity Tutors