Calculus 1 : How to find the meaning of functions

Study concepts, example questions & explanations for Calculus 1

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : How To Find The Meaning Of Functions

Take the limit

\lim_{x \to -2} \frac{x+\sqrt{x+6}}{x+2}\displaystyle \lim_{x \to -2} \frac{x+\sqrt{x+6}}{x+2}

Possible Answers:

\displaystyle 4

\displaystyle 2

\displaystyle \frac{8}{3}

\displaystyle \frac{5}{4}

\displaystyle \frac{2}{3}

Correct answer:

\displaystyle \frac{5}{4}

Explanation:

First, multiply the numerator and denominator by x-\sqrt{x+6}\displaystyle x-\sqrt{x+6} and it turns into

\lim_{x \to -2} \frac{(x+\sqrt{x+6})}{(x+2)}\frac{(x-\sqrt{x+6})}{(x-\sqrt{x+6})}\displaystyle \lim_{x \to -2} \frac{(x+\sqrt{x+6})}{(x+2)}\frac{(x-\sqrt{x+6})}{(x-\sqrt{x+6})}

\lim_{x \to -2} \frac{x^2-x-6}{(x+2)(x-\sqrt{x+6})}\displaystyle \lim_{x \to -2} \frac{x^2-x-6}{(x+2)(x-\sqrt{x+6})}

Factor the numerator and then cancel out the 'x+2'

\lim_{x \to -2} \frac{(x+2)(x-3)}{(x+2)(x-\sqrt{x+6})}\displaystyle \lim_{x \to -2} \frac{(x+2)(x-3)}{(x+2)(x-\sqrt{x+6})}

\lim_{x \to -2} \frac{(x-3)}{(x-\sqrt{x+6})}\displaystyle \lim_{x \to -2} \frac{(x-3)}{(x-\sqrt{x+6})}

After taking the limit, the answer is \displaystyle \frac{5}{4}

Example Question #2 : How To Find The Meaning Of Functions

If this limit is true, then what is the value of 'a'?

\lim_{x \to 3} \frac{x^4-a}{x^2-\sqrt{a}}=18\displaystyle \lim_{x \to 3} \frac{x^4-a}{x^2-\sqrt{a}}=18

Possible Answers:

\displaystyle 32

\displaystyle 121

\displaystyle 68

\displaystyle 9

\displaystyle 81

Correct answer:

\displaystyle 81

Explanation:

Factor the numerator

\lim_{x \to 3} \frac{(x^2-\sqrt{a})(x^2+\sqrt{a})}{x^2-\sqrt{a}}=18\displaystyle \lim_{x \to 3} \frac{(x^2-\sqrt{a})(x^2+\sqrt{a})}{x^2-\sqrt{a}}=18

Cancel the x^2-\sqrt{a}\displaystyle x^2-\sqrt{a}, plug in the limit and then solve for 'a'

\lim_{x \to 3} x^2+\sqrt{a}=18\displaystyle \lim_{x \to 3} x^2+\sqrt{a}=18

3^2+\sqrt{a}=18\displaystyle 3^2+\sqrt{a}=18

a=81\displaystyle a=81

Example Question #3 : How To Find The Meaning Of Functions

We have a line described as y=-\frac{1}{2}x+2\displaystyle y=-\frac{1}{2}x+2. Find the minimum distance between the origin and a point on that line.

Possible Answers:

1\displaystyle 1

d=\sqrt{\frac{4}{5}}\displaystyle d=\sqrt{\frac{4}{5}}

d=\frac{4}{\sqrt{5}}\displaystyle d=\frac{4}{\sqrt{5}}

\frac{16}{5}\displaystyle \frac{16}{5}

d=\frac{\sqrt{5}}{4}\displaystyle d=\frac{\sqrt{5}}{4}

Correct answer:

d=\frac{4}{\sqrt{5}}\displaystyle d=\frac{4}{\sqrt{5}}

Explanation:

We have the origin \displaystyle (0,0) and a point \displaystyle (x,y) located on the line.  That point represents the minimum distance to the orgin.  Apply the distance formula to these two points,

d=\sqrt{(x-0)^2+(y-0)^2}=\sqrt{x^2+y^2}\displaystyle d=\sqrt{(x-0)^2+(y-0)^2}=\sqrt{x^2+y^2}

Plug in the line equation, take the derivative, set it equal to zero, and solve for x.

d=\sqrt{x^2+(-\frac{1}{2}x+2)^2}=\sqrt{\frac{5}{4}x^2-2x+4}\displaystyle d=\sqrt{x^2+(-\frac{1}{2}x+2)^2}=\sqrt{\frac{5}{4}x^2-2x+4}{d}'=\frac{\frac{5}{2}x-2}{2\sqrt{\frac{5}{4}x^2-2x+4}}=0\displaystyle {d}'=\frac{\frac{5}{2}x-2}{2\sqrt{\frac{5}{4}x^2-2x+4}}=0

x=\frac{4}{5}\displaystyle x=\frac{4}{5}

Use this \displaystyle x value to find \displaystyle y

y=-\frac{1}{2}\left ( \frac{4}{5} \right )+2=\frac{8}{5}\displaystyle y=-\frac{1}{2}\left ( \frac{4}{5} \right )+2=\frac{8}{5}

So we have the point (\frac{4}{5},\frac{8}{5})\displaystyle (\frac{4}{5},\frac{8}{5}), which is closest to the origin. We can now find its distance from that origin.

d=\sqrt{\left (\frac{4}{5} \right )^2+\left ( \frac{8}{5} \right )^2}\displaystyle d=\sqrt{\left (\frac{4}{5} \right )^2+\left ( \frac{8}{5} \right )^2}

d=\sqrt{\frac{16}{5}}=\frac{4}{\sqrt{5}}\displaystyle d=\sqrt{\frac{16}{5}}=\frac{4}{\sqrt{5}}

Example Question #4 : How To Find The Meaning Of Functions

We have the following,

\int_{-5}^{5}\frac{x^2+(6+c)x+6c}{x+6}dx=-60\displaystyle \int_{-5}^{5}\frac{x^2+(6+c)x+6c}{x+6}dx=-60

What is c?

Possible Answers:

\displaystyle -5

\displaystyle -6

\displaystyle 6

\displaystyle 2

\displaystyle 8

Correct answer:

\displaystyle -6

Explanation:

First, factor the numerator of the integrand.

\int_{-5}^{5}\frac{(x+6)(x+c)}{x+6}dx\displaystyle \int_{-5}^{5}\frac{(x+6)(x+c)}{x+6}dx

Cancel out \displaystyle x+6

\int_{-5}^{5}\frac{(x+6)(x+c)}{x+6}dx=-60\displaystyle \int_{-5}^{5}\frac{(x+6)(x+c)}{x+6}dx=-60

\int_{-5}^{5}(x+c)dx=-60\displaystyle \int_{-5}^{5}(x+c)dx=-60

Perform the integral and then solve for \displaystyle c

\frac{1}{2}(5)^2+5c-\left ( \frac{1}{2}(-5)^2+(-5)c \right )=-60\displaystyle \frac{1}{2}(5)^2+5c-\left ( \frac{1}{2}(-5)^2+(-5)c \right )=-60

10c=-60\displaystyle 10c=-60

c=-6\displaystyle c=-6

Example Question #5 : How To Find The Meaning Of Functions

If \displaystyle h(x)=\int_{0}^{x}sin(u)du, find \displaystyle h^{'}(x)

Possible Answers:

\displaystyle h^{'}(x) = sin(x)

\displaystyle h^{'}(x) = sin(0.5x^2)

\displaystyle h^{'}(x) = -cos(x)

\displaystyle h^{'}(x) = cos(x)

Correct answer:

\displaystyle h^{'}(x) = sin(x)

Explanation:

Taking the derivative of an integral yields the original function, but because we have a different variable in the integration limits, the variable switches

Example Question #6 : How To Find The Meaning Of Functions

Evaluate \displaystyle \int(14x^7 +\frac{x^6}{(2)}+sin(x)-csc^2(x))dx

Possible Answers:

\displaystyle \frac{14x^8}{8}+\frac{x^7}{14}+cos(x)-cot(x)+C

\displaystyle \frac{14x^8}{8}+\frac{x^7}{14}-cos(x)+cot(x)+C

\displaystyle \frac{14x^6}{6}+\frac{x^5}{14}+cos(x)-cot(x)+C

\displaystyle 98x^6+3x^5+cos(x)+cot(x)

Correct answer:

\displaystyle \frac{14x^8}{8}+\frac{x^7}{14}-cos(x)+cot(x)+C

Explanation:

using integration identities: \displaystyle \int{x^n dx}= \frac{x^{n+1}}{n+1} and \int{sin(x) dx}= - cos(x) and \int{csc^2(x) dx}= -cot (x) 

Example Question #7 : How To Find The Meaning Of Functions

Evaluate

\displaystyle \int_{1}^{4}(4x^2+2x-8)dx

Possible Answers:

\displaystyle 66.33

\displaystyle 55.33

\displaystyle 71

\displaystyle 75

Correct answer:

\displaystyle 75

Explanation:

\displaystyle \int_{1}^{4}(4x^2+2x-8)dx

\displaystyle \frac{4x^3}{3} + \frac{2x^2}{2} -8x

\displaystyle \frac{4x^3}{3} + x^2 -8x         evaluate at \displaystyle \left [ 1,4 \right ]

\displaystyle \left(\frac{4(4)^3}{3} + (4)^2 -8(4)\right) - \left(\frac{4(1)^3}{3} + (1)^2 -8(1)\right)

\displaystyle =75

Example Question #8 : How To Find The Meaning Of Functions

Evaluate \displaystyle \int_{0}^{3}(2x(x^2+1)^3)dx

Possible Answers:

\displaystyle \frac{81}{4}

\displaystyle \frac{10001}{4}

\displaystyle \frac{9999}{4}

\displaystyle \frac{10000}{4}

Correct answer:

\displaystyle \frac{9999}{4}

Explanation:

\displaystyle \int_{0}^{3}(2x(x^2+1)^3)dx

Intergation by substitution

\displaystyle u= x^2+1

\displaystyle du=2xdx

new endpoints:

\displaystyle u=(3)^2+1=10

\displaystyle u=(0)^2+1=1

New Equation:

\displaystyle \int_{1}^{10}(u^3)du

\displaystyle \frac{u^4}{4} at \displaystyle \left [ 1,10 \right ]

\displaystyle = \frac{(10)^4}{4} - \frac{(1)^4}{4}

\displaystyle = \frac{(10000)}{4} - \frac{(1)}{4}

\displaystyle = \frac{9999}{4}

Example Question #9 : How To Find The Meaning Of Functions

What is \displaystyle \lim_{x \to 0^+} ~~x \cdot \ln(x) ?

Possible Answers:

0

1

undefined

-1

\displaystyle -\infty

Correct answer:

0

Explanation:

The relationship between \displaystyle ln(x) and x is an exponential relationship; \displaystyle x is going to \displaystyle 0 exponentially faster than \displaystyle ln(x) is going to \displaystyle -\infty . One way to prove this is to write \displaystyle x = 1/(1/x) and use L'Hôpital's rule:

\displaystyle \lim_{x \to 0^+} \frac{\ln x}{1/x} = \lim_{x \to 0^+} \frac{\ln'x}{(1/x)'} = \lim_{x \to 0^+} \frac{1/x}{-1/x^2} = \lim_{x \to 0^+} \frac{-x^2}{x} = -0 = 0

 

 

Example Question #9 : How To Find The Meaning Of Functions

Where is \displaystyle \frac{4x^3 - 21 x + 10}{x^2 - 5x + 6} discontinuous? Are those discontinuities removable?

Possible Answers:

Essential discontinuities at \displaystyle x = -2 and \displaystyle x = -3.

Removable discontinuity at \displaystyle x=2, essential discontinuity at \displaystyle x=3

Removable discontinuities at \displaystyle x=2 and \displaystyle x=3

Removable discontinuity at \displaystyle x=-2, essential discontinuity at \displaystyle x=-3.

Removable discontinuities at \displaystyle x=-2 and \displaystyle x=-3.

Correct answer:

Removable discontinuity at \displaystyle x=2, essential discontinuity at \displaystyle x=3

Explanation:

The rational function \displaystyle \frac{4x^3 - 21 x + 10}{x^2 - 5x + 6}  has a denominator with two roots, \displaystyle x=2 and \displaystyle x=3. These are discontinuities.

 

Factoring both top and bottom and canceling a term \displaystyle x-2 tells us that this function is equal to 

\displaystyle \frac{(2x - 1) (2x + 5)}{x - 3} 

except at \displaystyle x=2. This point is a removable discontinuity. \displaystyle x=3 is therefore an essential discontinuity where the ratio goes to \displaystyle \pm \infty.

Learning Tools by Varsity Tutors