Pre-Algebra : Absolute Value

Study concepts, example questions & explanations for Pre-Algebra

varsity tutors app store varsity tutors android store

Example Questions

Example Question #311 : Operations And Properties

Solve:

\(\displaystyle \left | -6+4\right |\times7=\)

Possible Answers:

\(\displaystyle 70\)

\(\displaystyle 14\)

\(\displaystyle -14\)

\(\displaystyle -70\)

Correct answer:

\(\displaystyle 14\)

Explanation:

\(\displaystyle \left | -6+4\right |\times7=\left | -2\right |\times7=2\times7=14\)

Example Question #1 : Absolute Value

Solve:

\(\displaystyle \left | 7-3\right |=\)

Possible Answers:

\(\displaystyle 10\)

\(\displaystyle 7\)

\(\displaystyle -4\)

\(\displaystyle 4\)

\(\displaystyle -10\)

Correct answer:

\(\displaystyle 4\)

Explanation:

Step 1: solve the problem 

\(\displaystyle \left | 7-3\right |=\left | 4\right |\)

Step 2: solve for absolute value

\(\displaystyle \left | 4\right |=4\)

 

Remember, absolute value refers to the total number of units, so it will always be positive. For instance, if I am $4 in debt, I have -$4, but the absolute value of my debt is $4, because that is the total number of dollars that I'm in debt. 

Example Question #313 : Operations And Properties

Solve:

\(\displaystyle \small \small \left | 3-8 \right | =\)

 

Possible Answers:

\(\displaystyle \small -5\)

\(\displaystyle \small 5\)

\(\displaystyle \small -11\)

\(\displaystyle \small 11\)

Correct answer:

\(\displaystyle \small 5\)

Explanation:

First, solve the equation:

\(\displaystyle \small \left | 3-8 \right | = \left | -5 \right |\)

Next, account for the absolute value:

\(\displaystyle \small \left | -5 \right | = 5\)

Therefore, the answer is \(\displaystyle \small 5\).

Example Question #4 : Absolute Value

Solve the expression below:

 \(\displaystyle \small \small 19+\left |3*(-6) \right |\) 

Possible Answers:

\(\displaystyle \small 72\)

\(\displaystyle \small 36\)

\(\displaystyle \small 37\)

\(\displaystyle \small -1\)

\(\displaystyle \small 1\)

Correct answer:

\(\displaystyle \small 37\)

Explanation:

\(\displaystyle \small \small \small 19+\left |3*(-6) \right |\) simplifies to \(\displaystyle \small \small \small \small 19+\left |-18 \right |\)

For absolute value expressions, the value within the bars is treated as positive

So, the expression becomes \(\displaystyle \small 19+18\) which adds to \(\displaystyle \small 37\)

Example Question #5 : Absolute Value

Evaluate:

\(\displaystyle \left | -45 + \left (-83 \right ) \right | - 23\)

Possible Answers:

\(\displaystyle 151\)

\(\displaystyle -61\)

None of the other responses is correct.

\(\displaystyle 15\)

\(\displaystyle 105\)

Correct answer:

\(\displaystyle 105\)

Explanation:

\(\displaystyle \left | -45 + \left (-83 \right ) \right | - 23\)

\(\displaystyle = \left | - \left (45+83 \right ) \right | - 23\)

\(\displaystyle = \left | - 128 \right | - 23\)

\(\displaystyle = 128 - 23\)

\(\displaystyle = 105\)

Example Question #2 : Absolute Value

Solve:

\(\displaystyle 4+\left | -8-5 \right |=\)

Possible Answers:

\(\displaystyle 7\)

\(\displaystyle -9\)

\(\displaystyle 17\)

\(\displaystyle 1\)

Correct answer:

\(\displaystyle 17\)

Explanation:

\(\displaystyle 4+\left | -8-5 \right |=4+\left | -13 \right |=4+13=17\)

Example Question #6 : Absolute Value

Evaluate for \(\displaystyle x = 9\):

\(\displaystyle | \left | x - 18\right | - x|\)

Possible Answers:

\(\displaystyle 18\)

\(\displaystyle -9\)

\(\displaystyle -18\)

\(\displaystyle 36\)

\(\displaystyle 0\)

Correct answer:

\(\displaystyle 0\)

Explanation:

Substitute 9 for \(\displaystyle x\) and evaluate:

\(\displaystyle | \left | x - 18\right | - x|\)

\(\displaystyle = | \left | 9 - 18\right | - 9|\)

\(\displaystyle = | \left | - \left (18- 9 \right ) \right | - 9|\)

\(\displaystyle = | \left | -9 \right | - 9|\)

\(\displaystyle = | 9- 9|\)

\(\displaystyle = | 0 |\)

\(\displaystyle = 0\)

Example Question #3 : Absolute Value

Evaluate for \(\displaystyle x = -6\):

\(\displaystyle | |20 + x | - 6 -x |\)

Possible Answers:

\(\displaystyle 26\)

\(\displaystyle -2\)

\(\displaystyle 38\)

\(\displaystyle 2\)

\(\displaystyle 14\)

Correct answer:

\(\displaystyle 14\)

Explanation:

Substitute \(\displaystyle -6\) for \(\displaystyle x\) and evaluate:

\(\displaystyle | |20 + x | - 6 -x |\)

\(\displaystyle =| |20 + (-6) | - 6 -(-6) |\)

\(\displaystyle =| |20 -6 | - 6 -(-6) |\)

\(\displaystyle =|14- 6 -(-6) |\)

\(\displaystyle =|8 -(-6) |\)

\(\displaystyle =|8+6 |\)

\(\displaystyle =|14 |\)

\(\displaystyle = 14\)

Example Question #8 : Absolute Value

Solve:

\(\displaystyle \left | 3-8\right |=\)

Possible Answers:

\(\displaystyle 5\)

\(\displaystyle 11\)

\(\displaystyle -5\)

\(\displaystyle \textup{No solution}\)

\(\displaystyle -11\)

Correct answer:

\(\displaystyle 5\)

Explanation:

Explanation:

Step 1: Solve the problem

\(\displaystyle \left | 3-8\right |=\left | -5\right |\)

Step 2: Solve for the absolute value

\(\displaystyle \left | -5\right |=5\)

Remember, absolute value refers to the total number of units, so it will always be positive. For instance, if I am $5 in debt, I have -$5, but the absolute value of my debt is $5, because that is the total number of dollars that I'm in debt.

Example Question #4 : Absolute Value

Solve for \(\displaystyle x\).

\(\displaystyle \left | x\right |=5\)

Possible Answers:

\(\displaystyle 5\)

\(\displaystyle 0\)

\(\displaystyle \pm5\)

\(\displaystyle -5\)

\(\displaystyle 2\)

Correct answer:

\(\displaystyle \pm5\)

Explanation:

When taking absolute values, we need to consider both positive and negative values. So, we have two answers. \(\displaystyle x=5, x=-5\)

Learning Tools by Varsity Tutors