SAT Math : Expressions

Study concepts, example questions & explanations for SAT Math

varsity tutors app store varsity tutors android store varsity tutors ibooks store

Example Questions

Example Question #1 : How To Add Rational Expressions With Different Denominators

Simplify the expression.

\displaystyle \frac{x}{2x+4}+\frac{x}{x+2}

Possible Answers:

\displaystyle \frac{2x}{3x+6}

\displaystyle \frac{3x}{2x+4}

\displaystyle \frac{x}{x+2}

\displaystyle \frac{x+1}{2x+4}

\displaystyle \frac{1}{2x+4}

Correct answer:

\displaystyle \frac{3x}{2x+4}

Explanation:

To add rational expressions, first find the least common denominator. Because the denominator of the first fraction factors to 2(x+2), it is clear that this is the common denominator. Therefore, multiply the numerator and denominator of the second fraction by 2.

\displaystyle \frac{x}{2x+4}+\frac{x}{x+2}

\displaystyle \frac{x}{2x+4}+\frac{(2)x}{(2)(x+2)}

\displaystyle \frac{x}{2x+4}+\frac{2x}{2x+4}

\displaystyle \frac{3x}{2x+4}

This is the most simplified version of the rational expression.

 

Example Question #1 : Rational Expressions

Simplify the following:

\displaystyle \frac{x+3}{x-2}+\frac{x-2}{x+3}

Possible Answers:

\displaystyle 2x^2-4x+4

\displaystyle \frac{(x+3)^2+(x-2)^2}{(x+3)(x-2)}

\displaystyle \frac{2(x+3)(x-2)}{(x+3)(x-2)}

\displaystyle 2

Correct answer:

\displaystyle \frac{(x+3)^2+(x-2)^2}{(x+3)(x-2)}

Explanation:

To simplify the following, a common denominator must be achieved. In this case, the first term must be multiplied by (x+2) in both the numerator and denominator and likewise with the second term with (x-3).

\displaystyle \frac{(x+3)(x+3)}{(x-2)(x+3)}+\frac{(x-2)(x-2)}{(x+3)(x-2)}

\displaystyle \frac{(x+3)^2+(x-2)^2}{(x+3)(x-2)}

Example Question #12 : Expressions

If √(ab) = 8, and a= b, what is a?

Possible Answers:

2

4

16

10

64

Correct answer:

4

Explanation:

If we plug in a2 for b in the radical expression, we get √(a3) = 8. This can be rewritten as a3/2 = 8. Thus, loga 8 = 3/2. Plugging in the answer choices gives 4 as the correct answer. 

Example Question #1 : Expressions

Function_part1

 

Possible Answers:

9/5

37/15

–11/5

–9/5

–37/15

Correct answer:

–11/5

Explanation:

Fraction_part2

Fraction_part3

Example Question #1 : Rational Expressions

If Jill walks \displaystyle 100\:\text{ft} in \displaystyle 20\:\sec, how long will it take Jill to walk \displaystyle 1500\:\text{ft}

Possible Answers:

\displaystyle 400\sec

\displaystyle 100\sec

\displaystyle 300\sec

\displaystyle 30\sec

\displaystyle 200\sec

Correct answer:

\displaystyle 300\sec

Explanation:

To solve this, we need to set a proportion.

\displaystyle \frac{100\:\text{ft}}{20\sec}=\frac{1500\:\text{ft}}{x}

Cross Multiply

\displaystyle 100\cdot x=1500\cdot 20

\displaystyle x=\frac{30000}{100}=300

So it will take Jill \displaystyle 300 \sec to walk \displaystyle 1500\: \text{ft}

Example Question #2 : Rational Expressions

If \displaystyle \frac{b+c}{c}=\frac{14}{15}, then which of the following must be also true? 

Possible Answers:

\displaystyle \frac{b}{c}=\frac{7}{10}

\displaystyle \frac{b}{c}=-\frac{1}{15}

\displaystyle \frac{b}{c}=1

\displaystyle \frac{b}{c}=10

Correct answer:

\displaystyle \frac{b}{c}=-\frac{1}{15}

Explanation:

\displaystyle \frac{b+c}{c}=\frac{14}{15}

\displaystyle \frac{b}{c}+\frac{c}{c}=\frac{14}{15}

\displaystyle \frac{b}{c}+1=\frac{14}{15}

\displaystyle \frac{b}{c}+1\ {\color{Red} -1}=\frac{14}{15}\ {\color{Red} -1}

\displaystyle \frac{b}{c}=\frac{14}{15}-\frac{15}{15}

\displaystyle \frac{b}{c}=-\frac{1}{15}

Example Question #4 : Rational Expressions

Which of the following is equivalent to \dpi{100} \frac{(\frac{1}{t}-\frac{1}{x})}{x-t} ? Assume that denominators are always nonzero.

Possible Answers:

x^{2}-t^{2}\displaystyle x^{2}-t^{2}

x-t\displaystyle x-t

\frac{x}{t}\displaystyle \frac{x}{t}

t-x\displaystyle t-x

(xt)^{-1}\displaystyle (xt)^{-1}

Correct answer:

(xt)^{-1}\displaystyle (xt)^{-1}

Explanation:

We will need to simplify the expression \frac{(\frac{1}{t}-\frac{1}{x})}{x-t}\displaystyle \frac{(\frac{1}{t}-\frac{1}{x})}{x-t}. We can think of this as a large fraction with a numerator of \frac{1}{t}-\frac{1}{x}\displaystyle \frac{1}{t}-\frac{1}{x} and a denominator of \dpi{100} x-t.

In order to simplify the numerator, we will need to combine the two fractions. When adding or subtracting fractions, we must have a common denominator. \frac{1}{t}\displaystyle \frac{1}{t} has a denominator of \dpi{100} t, and \dpi{100} -\frac{1}{x} has a denominator of \dpi{100} x. The least common denominator that these two fractions have in common is \dpi{100} xt. Thus, we are going to write equivalent fractions with denominators of \dpi{100} xt.

In order to convert the fraction \dpi{100} \frac{1}{t} to a denominator with \dpi{100} xt, we will need to multiply the top and bottom by \dpi{100} x.

\frac{1}{t}=\frac{1\cdot x}{t\cdot x}=\frac{x}{xt}\displaystyle \frac{1}{t}=\frac{1\cdot x}{t\cdot x}=\frac{x}{xt}

Similarly, we will multiply the top and bottom of \dpi{100} -\frac{1}{x} by \dpi{100} t.

\frac{1}{x}=\frac{1\cdot t}{x\cdot t}=\frac{t}{xt}\displaystyle \frac{1}{x}=\frac{1\cdot t}{x\cdot t}=\frac{t}{xt}

We can now rewrite \frac{1}{t}-\frac{1}{x}\displaystyle \frac{1}{t}-\frac{1}{x} as follows:

\frac{1}{t}-\frac{1}{x}\displaystyle \frac{1}{t}-\frac{1}{x} = \frac{x}{xt}-\frac{t}{xt}=\frac{x-t}{xt}\displaystyle \frac{x}{xt}-\frac{t}{xt}=\frac{x-t}{xt}

Let's go back to the original fraction \frac{(\frac{1}{t}-\frac{1}{x})}{x-t}\displaystyle \frac{(\frac{1}{t}-\frac{1}{x})}{x-t}. We will now rewrite the numerator:

\frac{(\frac{1}{t}-\frac{1}{x})}{x-t}\displaystyle \frac{(\frac{1}{t}-\frac{1}{x})}{x-t} = \frac{\frac{x-t}{xt}}{x-t}\displaystyle \frac{\frac{x-t}{xt}}{x-t}

To simplify this further, we can think of \frac{\frac{x-t}{xt}}{x-t}\displaystyle \frac{\frac{x-t}{xt}}{x-t} as the same as \frac{x-t}{xt}\div (x-t)\displaystyle \frac{x-t}{xt}\div (x-t) . When we divide a fraction by another quantity, this is the same as multiplying the fraction by the reciprocal of that quantity. In other words, a\div b=a\cdot \frac{1}{b}\displaystyle a\div b=a\cdot \frac{1}{b}.

 

\frac{x-t}{xt}\div (x-t)\displaystyle \frac{x-t}{xt}\div (x-t) = \frac{x-t}{xt}\cdot \frac{1}{x-t}\displaystyle \frac{x-t}{xt}\cdot \frac{1}{x-t}=\frac{x-t}{xt(x-t)}\displaystyle =\frac{x-t}{xt(x-t)}= \frac{1}{xt}\displaystyle = \frac{1}{xt}

Lastly, we will use the property of exponents which states that, in general, \frac{1}{a}=a^{-1}\displaystyle \frac{1}{a}=a^{-1}.

\frac{1}{xt}=(xt)^{-1}\displaystyle \frac{1}{xt}=(xt)^{-1}

The answer is (xt)^{-1}\displaystyle (xt)^{-1}.

Example Question #3 : Expressions

Simplify (4x)/(x– 4) * (x + 2)/(x– 2x)

Possible Answers:

4/(x + 2)2

x/(x – 2)2

4/(x – 2)2

(4x+ 8x)/(x+ 8x)

x/(x + 2)

Correct answer:

4/(x – 2)2

Explanation:

Factor first.  The numerators will not factor, but the first denominator factors to (x – 2)(x + 2) and the second denomintaor factors to x(x – 2).  Multiplying fractions does not require common denominators, so now look for common factors to divide out.  There is a factor of x and a factor of (x + 2) that both divide out, leaving 4 in the numerator and two factors of (x – 2) in the denominator.

Example Question #3 : Expressions

what is 6/8 X 20/3

Possible Answers:
5
3/20
120/11
18/160
9/40
Correct answer: 5
Explanation:

6/8 X 20/3 first step is to reduce 6/8 -> 3/4 (Divide top and bottom by 2)

3/4 X 20/3 (cross-cancel the threes and the 20 reduces to 5 and the 4 reduces to 1)

1/1 X 5/1 = 5

Example Question #8 : Rational Expressions

Evaluate and simplify the following product:

\displaystyle \frac{15x^2+4xy^3-3y}{x^2y^7}\times\frac{5y^4}{4x^3}

Possible Answers:

\displaystyle \frac{20x^2+9xy^3-2y}{4x^5y^3}

\displaystyle \frac{75x^2+20xy^3-15y}{4x^5y^3}

Correct answer:

\displaystyle \frac{75x^2+20xy^3-15y}{4x^5y^3}

Explanation:

The procedure for multplying together two rational expressions is the same as multiplying together any two fractions: find the product of the numerators and the product of the denominators separately, and then simplify the resulting quotient as far as possible, as shown:

\displaystyle \frac{15x^2+4xy^3-3y}{x^2y^7}\times\frac{5y^4}{4x^3}

\displaystyle =\frac{(15x^2+4xy^3-3y)(5y^4)}{(x^2y^7)(4x^3)}

\displaystyle =\frac{75x^2y^4+20xy^7-15y^5}{4x^5y^7}

\displaystyle =\frac{75x^2+20xy^3-15y}{4x^5y^3}

Learning Tools by Varsity Tutors